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ABSTRACT

We have used a new plasma simulation model to study
the resonant interactions between streaming cosmic-ray
ions and a self-consistent spectrum of Alfven waves, such
as might exist in the interstellar medium upstream of a
supernova remnant shock wave. The computational
model is a hybrid one, in which the background
interstellar medium is an MHD fluid and the cosmic-

rays are discrete kinetic particles. The particle sources
for the electromagnetic fields are obtained by averaging
over the fast cyclotron motions. When the perturbed
magnetic field is larger than about 10% of the
background field, the macro- and micro-physics are no
longer correctly predicted by quasi-linear theory. The
particles are trapped by the waves and show sharp jumps
in their pitch-angles relative to the background magnetic
field, and the effective ninety-degree scattering time for
diffusion parallel to the background magnetic field is
reduced to between 5 and 30 cyclotron periods. We use
our simulation results to suggest that Type I supernova
remnants may be the principal sites of cosmic ray
acceleration.

Keywords: cosmic-ray acceleration, first-order Fermi
acceleration, shock acceleration, upstream waves,
quasilinear diffusion, supernova remnants

1. INTRODUCTION

In the late 1970's, several authors almost simultaneously
suggested that cosmic-rays can be accelerated by a first-
order Fermi mechanism, brought about as they scatter
many times across astrophysical shock waves (Ref. 1). In
the context of explaining the energy density and
spectrum of galactic cosmic rays, the shock waves driven
by expanding supernova remnants give the most likely
setting for such acceleration. This hypothesis is
attractive for at least two reasons: 1) it predicts a power-
law particle spectrum similar to that deduced as the
source spectrum for galactic cosmic rays, and 2) the
overall energetics of galactic supernovae is sufficient to
account for the observed cosmic-ray energy density,

provided that the acceleration process is at least a few
percent efficient.

However the fact that the cosmic-ray source spectrum
seems to extend smoothly up to 1014 - 1015 eV poses a
potential difficulty for these theories. The reason is as
follows. In diffusive cosmic-ray acceleration, a particle
gains a small amount of energy each time it is scattered
across the shock front. The highest-energy particles
must cross and re-cross the shock front many times in
the process of being accelerated. Thus considerable
amounts of time are required to accelerate the highest-
energy cosmic-rays.

The effective upper limit on the energy to which a
particle can be accelerated in these first-order Fermi-
acceleration theories is given by equating the
acceleration time to an estimate of the lifetime of the
supernova remnant (Ref. 2). Using a minimum value of
the spatial diffusion coefficient

Dmin = rL v / 3, (1)

where rL is the ion 1.armor radius based on the
background field, Lagage and Cesarsky 2 obtained an
upper limit on the cosmic-ray energy:

Emax < a few x 1013 (B0 / 10-6 gauss) Z/A eV. (2)

Here Z/A is the nuclear charge-to-mass ratio of the
cosmic-ray ion and B is the value of the interstellar0
magnetic field. This result is puzzling, since the cosmic-
ray source spectrum is observed to be smooth in slope
and continuous in value to energies in excess of this
limit, suggesting that there is not a transition in
acceleration mechanisms at the energy given by equation
(2). One would like to establish a more realistic
maximum cosmic-ray energy by using a self-consistently
derived diffusion coefficient to replace that in Eqn. (1).
The computational simulations we describe here can
begin to address this issue by explicitly evaluating the
diffusion coefficient of fast particles in a self-consistent
spectrum of Alfven waves, and studying its scaling with
cosmic-ray flux.
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The efficiency of diffusive cosmic-ray acceleration is also
an important issue. First-order Fermi acceleration
predicts that the efficiency depends on the spatial
diffusion coefficient, which itself depends on the
scattering rate. Frequently, quasi-linear assumptions

have been used to describe scattering in the self-
consistent spectrum of Alfven waves upstream of the
shock front. Yet several different arguments (Ref. 3)
suggest that the Alfven-wave perturbations near the
shock are large (rB/B 0 > 1), thus violating the initial
quasi-linear assumptions. Recent observations of fast
particles and AlDen waves at interplanetary shocks (Ref.
4) show several types of non-quasi-linear behavior. The
computer simulation study described here allows a more
general examination of these effects, since it does not
require quasi-linear conditions to be satisfied.

2. THE COMPUTATIONAL MODEL

The intention is to model a region upstream of a
supernova remnant shock-wave, in which there exists an
anisotropic distribution of cosmic-rays as a consequence
of the previous action of the shock-acceleration process.
The shock-wave itself is not included in the simulation

volume; its presence is reflected via the anisotropy of the
initial cosmic-ray distribution. We study the time
evolution of this initially anisotropic cosmic-ray
distribution, together with the self-consistent Alfven
waves which it produces.

Our simulation model is an orbit-averaged Darwin
quasi-neutral hybrid code (Ref. 5). In less technical
terms, this means the following. The electrons and ions
in the interstellar medium are treated as a single ideal
MHD (magnetohydrodynamic) fluid, while the cosmic-
ray ions are treated as discrete kinetic particles. The
displacement current is assumed small relative to plasma
currents, and the cosmic-ray number density is assumed
small relative to the density of the interstellar medium.

The simulation geometry is one-dimensional, with a
periodic grid having either 128 or 256 mesh points.
Magnetic and electric fields are defined on the grid
points. The direction of spatial variation (the x-axis) is
parallel to the background magnetic field, so that all

waves propagate parallel, or antiparallel, to B0. All
perturbed magnetic fields are perpendicular to the
background field.

Cosmic-rays are represented by 32000 discrete particles,
whose currents contribute as sources for the self-

consistent magnetic and electric fields at the grid points.

Particle positions are defined along the whole x-axis, not
just at grid points. Particle trajectories in position and
velocity are integrated via micro-timesteps at, with
resolution sufficient to follow the cyclotron motion in
detail. Currents due to the particles are averaged over
much larger time intervals aT, where typically N -
aT/at = 88. This orbit-averaging method allows the
field-solve to be done much less frequently than the
particle-push. In addition, it results in a discrete-particle
noise level that is lower by a factor of N than that which
would otherwise obtain for the same number of cosmic-

ray particles in the absence of orbit-averaging (Ref. 6).
As a consequence, it is practical to simulate instabilities
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Figure 1: Initial cosmic-ray distribution function for
Models A and B. Contours show equal values of p2f(p) ;
vertical axis is p/mc = -tv/c ; horizontal axis is the cosine
of the particle's pitch-angle relative to B0.

which grow slowly relative to the cyclotron period of the
cosmic-rays.

The initial distribution function of the cosmic-rays is a
power-law in the magnitude of the momentum, with
spectral index 4:

f(p) d3p = p-4 d3p, 0.1 _< -tv/c < 2.0. (3)

This power-law momentum distribution is then taken to
be drifting relative to the laboratory frame with a (non-
relativistic) drift velocity vo = 0.1 c = 10 vA, where vA
is the Alfven speed:

VA2 = B02 / 4 _r p . (4)

Figure 1 illustrates the initial shape of this drifting
power-law cosmic-ray distribution function in our
simulations.

We shall discuss in some detail two contrasting
simulations, Model A and Model B, which differ only in
the initial density of cosmic-rays relative to the
background interstellar medium:

Model A: ncr/nis m = 4 x 10.3 ; ncrVD / nismVA = 0.04 ;

Model B: nct/nis m = 4 x 10.2 ; ncrVD / nismVA = 0.40 (5)

3. RESULTS OF THE SIMULATIONS

The overall evolution in both Model A and Model B is
as follows. The initial anisotropy of the cosmic-rays
relative to Bo drives a resonant Alfven-wave instability in
the interstellar medium. A broad spectrum of Alfven
waves grows up in time, since modes with different
wavenumbers k can resonate with different particles in
the power-law distribution function. When the Alfven
waves reach large amplitude, mode-coupling between
them also drives sound-wave fluctuations in the
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Figure 2: Time histories of energy density in the most unstable Alfven-wave mode.

a) Model A, n_/nis m -- 4 x 10 -3 ; b) Model B, n_/ni_ -- 4 x 10 -2 . Vertical axis is

kBk2/B0 2, horizontal axis is cyclotron frequency times time.

background interstellar medium. As a consequence of

the Alfven-wave fluctuations, the mean cosmic-ray drift

velocity decreases from its initial level as individual

cosmic-rays are scattered in pitch-angle.

Frames a and b of Figure 2 show the time evolution of

energy in the largest unstable Alfven-wave mode for

Models A and B respectively. An initial period of

exponential growth of the resonant anisotropy-driven

instability is followed by saturation of the Alfven-wave

amplitudes. For Model A (the low-flux case), root-

mean-square magnetic field perturbations in the

saturated phase are (_ B/B0)rm s = 3 x 10 -2 ; individual

magnetic-field peaks with amplitudes (_B/B0).pea k =
0.15 are present in snapshots of 6BIB o as a tuncuon of

x. For Model B (the high-flux case), rms magnetic field

perturbations in the saturated phase are (4 B/B0)rm s =

0.2 - 0.3 , with individual peak field amplitudes

(4 B/B_) --= 0 9 - 1 1 Thus one interesting lesson is
O peak " " "

that the description of a spectrum of Alfven-waves in

terms of rms perturbation levels can lead one to forget

that individual magnetic-field maxima are present at

values many times larger than the rms level. We shall

see below that these larger-than-average peaks can have

a strong influence on the non-quasilinear behavior of the

particle scattering.

For Model A, the low-flux simulation, the Alfven-waves
propagate forward (in the direction of the cosmic-ray
anisotropy). However for Model B, where the Alfven-

wave amplitudes are larger, we observe some backward

propagating Alfven-waves. We also observe sound-wave

perturbations in the background interstellar medium,
driven by wave-wave coupling between different Alfven

wave modes. We have suggested elsewhere (Ref. 7) that

sound-waves driven by Alfven-wave turbulence upstream

of astrophysical shocks may contribute to the electron

density fluctuations inferred from interstellar scintilla-

tion measurements. Figure 3 illustrates the Alfven-wave

amplitudes (left panel) and the sound-wave amplitudes

(fight panel) as functions of x and t, for Model B.

Forward propagation corresponds to a line moving

upwards and to the right in these pictures.

As a result of scattering of individual cosmic-rays by the

Alfven waves, the mean drift velocity vD of the cosmic-

By(x,t) p(x,t)

X X

Figure 3: Amplitudes of Alfven waves (left panel) and

sound waves (fight panel) in Model B, as functions of x

and t.
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Figure 4: Time evolution of cosmic-ray drift velocity,
v D , in Model A. Horizontal axis is cydotron frequency
times the time.

rays decreases with time. Figure 4 shows the decline of
/c with time for Model A, the low-flux simulation.
e horizontal axis oct is the cyclotron frequency times

the time.

We have used test-particles to study the scattering
process of cosmic-rays in these self-consistent Alfven-
wave spectra. In frames a and b of Figure 5, we plot the
trajectories of two typical test-particles in Models A and
B respectively. The vertical axis _, in these plots is the
cosine of the particle's pitch-angle relative to the actual
magnetic field; the horizontal axis t_t is the cyclotron
frequency times the time. We have constructed
analogous trajectory plots using the pitch-angle relative
to the background magnetic field B0 , which is more
relevant to calculation of the -spatial diffusion
coefficient; we find similar results to those shown here.

The test-particle in Model A, the low-flux case, shows a
trajectory that is qualitatively diffusive in nature, made
up of a sequence of small changes in pitch-angle. This is

1.00

-1.00

-- I I

a

- I
o lOO

the type of behavior that is predicted by quasi-linear
theory. Note, however, that the particle diffuses through

= 0 without any hesitation, whereas lowest-order
quasilinear theory predicts that diffusion through _ = 0
should not be possible.

The test-particle in Model B, the high-flux case, shows
markedly different behavior. Its trajectory is dominated
by large jumps in pitch-angle, s_,/_, = 1, within 5 to 10
cyclotron periods, and by repeated passes through _ =
0. These large jumps in pitch-angle are decidedly non-
quasilinear, since they involve order-unity changes in

pitch-angle in a few cyclotron periods. To investigate
their physical origin, we followed in detail all of the
forces experienced by a test-particle during one jump
from t, = + 1 to _ = -1. The largest systematic force is
the x-component of the Lorentz force, ( SV.Lx 6B.L )x,
representing the nonlinear force due to the perturbed
particle velocity and the perturbed magnetic field.

Figure 6 shows the time evolution of this ( _V_Lx 6B_L)x
force on the test-particle during its rapid jump from _,=
+ 1 to v = -1. Note that the timescale on the horizontal
axis is greatly expanded relative to that in Figure 5.
During the rapid jump, the particle experiences a series
of brief intervals when the ( 6V.Lx 6B_L )S force is large,
both in the positive and negative directmns. However
during this particular time interval there are four large
negative spikes in ( _iV_Lx 6B± )x which outweigh the
smaller positive spikes, and which together are
responsible for the large net force on the test particle in
the negative x direction. One interpretation of these
large negative spikes is that they represent intervals
during which the test-particle experiences magnetic
trapping in large-amplitude Alfven waves. This is
supported by the analysis in Ref. 6 of the phase angle
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Figure 5: Trajectories of testparticles showingevolution of pitch-angle t= = cos o, as
function of the cyclotron frequency times the time. a) Test particle in Model A (low
cosmic-ray flux); b) The same test particle in Model B (high cosmic-ray flux).
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Figure 6: The x-component of the v x B force on a test
particle in Model B, during the brief time interval when
the particle is undergoing a sharp negative jump in pitch-
angle. Vertical axis is x-component of the Lorentz force,
normalized to B0 ; horizontal axis is cyclotron frequency
times the time, using a greatly expanded scale.

between v± and B±, which pauses near zero degrees
during the main negative spikes shown in Figure 6.

We conclude from these results that the higher-flux
simulation, Model B, shows substantial non-quasilinear
behavior, particularly in its particle scattering
characteristics. To assess the effect on the spatial
diffusion coefficient of cosmic-rays, we have computed
the effective ninety-degree scattering time in our
simulations using an ensemble of test-particles. We
compute the ninety-degree scattering time as a function
of the magnitude of the particle momentum, for each of
the simulation conditions we have modeled. The
calculation is based on constructing the auto-correlation

function of the pitch-angle relative to B0, followed along
a test-particle's trajectory:

Tmax

Cg(r) = (1/Tmax) J" (#(t) - <_ >)(_(t+r)- <_ >) dt (6)
0

The autocorrelation time r ac is calculated from the

half-width of the central peak of Cg( r). The ninety-
degree scattering time r 9o is then given by

%o = < r,e / C,(r =0) >, (7)

where the brackets indicate an ensemble average over
all of the test-particles. Further details of this
calculation, as well as graphs showing the
autocorrelation functions themselves, may be found in
Ref. 6.

4. IMPLICATIONS FOR COSMIC-RAY
ACCELERATION

4.1 Scaling Laws

Computational realities have constrained us to simulate
only a relatively small portion of the parameter space of
interest to cosmic-ray acceleration at supernova remnant
shock-waves. Thus, for example, our results do not apply
directly to the scattering of the highest-energy cosmic-
rays, since the simulations lack sufficient dynamic range
in particle energy. However, we can use our simulation

results to construct scaling laws and upper limits for the
important physical quantities involved in diffusive
acceleration. These scaling-laws give a suggestion of the
physical behavior that will apply for parameter ranges
which are presently out of reach of direct computational
simulation.

In particular, the values of the ninety degree scattering
time constructed from our simulations can be used to

investigate the scaling of the cosmic-ray diffusion
coefficient. The spatial diffusion coefficient is given by

D= v2rgo / 3 ; (8)

we can use the values of r90 from our simulations to
investigate D. First we consider the variation of r90
with the amplitude of the magnetic-field perturbations.
Figure 7 shows the dependence of the cyclotron
frequency times the ninety degree scattering time, Or90,
on the root-mean-square strength of the magnetic field
perturbations, denoted here by _B/B 0 . The three
curves shown in Figure 7 correspond to three different
values of the magnitude of the particle momentum,
-tv/c. An approximate fit to these curves is given by the
following relations:

Org0 = K1 ( aB/Bo)-3 +0.6, 0.4_< _;B/Bo_< 0.7 ;

Or90 : I( 2 ( _B/B0)-0"4, 0.06_< _B/B0_< 0.4 ; (9)

where KI= lax 101 _+0.2, and K2= 140.

Recall that the quasi-linear model normally used for
calculations of cosmic-ray scattering is that of Jokipii
(Ref. 8), which predicts that

Or 90= (4/_r) (B02/Id3k2), (10)

where Bk is the Fourier amplitude of the magnetic field

g
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Figure 7: Scaling relation between ninety degree scat-

tering time r 90and root-mean-square amplitude of mag-
netic field perturbations SB/B 0 , from a collection of
simulations. Lines represent ninety-degree scattering for
different particle momenta: p/me = 0.1 (filled tri-
angles), 0.2 (filled squares), and 0.4 (empty triangles).
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fluctuationsatwavenumber k. If we roughly equate

kBk2/B02 in Eqn. (10) with (_B/B0) 2 , then Jokipii's
quasilinear theory would predict Or90 ¢' (_ B/B0)'2 in
F_,qn. (9), which should apply at the lower values of

6B/B 0 . Instead, the observed dependence orgo
(_ B/Bo)'0"4 for small values of 6B/B o is considerably
weaker than this prediction. We conclude that for the

perturbation amplitudes we have studied ( _B/B 0 >_.
0.06 ), the ninety-degree scattering times seen in our
simulations do not follow the simple quasilinear trends
generally assumed in theories of cosmic-ray diffusion.

4.2 Maximum Ener_ of Cosmic-Rays

As a substitute for quasi-linear theory, we can use the
empirical relations given in Eqn. (9) and Figure 7 to
calculate E m _ , the maximum cosmic-ray energy that
can be produced during the active lifetime of a
supernova remnant. We shall follow the general
approach of Lagage and Cesarsky (Ref. 2), using our
empirically derived scaling for the ninety degree
scattering time. We calculate the cosmic-ray momentum
as a function of time, using the Sedov solution for the
evolution of the supernova remnant shock-wave, and

find the asymptotic maximum cosmic-ray energy Emax
together with the time needed to achieve this energy.

Since we are not able to simulate directly the scattering
of particles with energies typical of the highest-energy
cosmic rays ( 1014 - 10k5 eV ), we shall have to make
some assumptions concerning the self-consistent
behavior of these particles and of the Alfven waves
which scatter them. According to resonant quasi-linear
theory, particles at a given momentum p generate the
waves by which they are themselves scattered, at the
resonant wavenumber k(p) = 1 / rL(P) _ -r"1 . The
highest-energy cosmic-rays are rare compared with those
at lower energies, because of the power-law distribution
function (Eqn. 3). As a result, one might expect the
wave amplitudes at small k (long wavelength) to be
smaller than those at higher k. To derive an upper limit
for E m_ , we neglect this wavelength distinction and
assume that the scahng results of our simulations also
apply to particles having higher energies than those
present in the simulations.

Assuming a spatially uniform diffusion coefficient,

Lagage and Cesarsky found the rate of gain of
momentum for a particle encountering a shock in a
diffusive manner to be

p'l dp/dt = (Ul- u2)(Ul u2)/[3D (u 1 + u2) ] (11)

where u 1 and u2 are the fluid velocities up and
downstream of the shock, measured in the shock frame.

We assume a strong shock, so that u2/u 1 = 1/4. If we
substitute our results from Eqn. (9) into Eqn. (8) for D,

and then use this diffusion coefficient in Eqn. (11), we
find for relativistic particles that

dp/dt = ( 3/20 ) ( eB o/0,9o ) (u 1 / c )2

= (3eBo/20KIj ")(6B/Bo) a (ui/c)2 (12)

where K t and K 2 are defined below Eqn. (9) and

,, = 3_+ 0.6, 0.4_ _B/B0-< 0.7,

,_ = 0.4, 0.06_< aB/B0_< 0.4 . (13)

Here B0 is the magnitude of the background magnetic
field upstream of the shock.

We evaluate u1 in Eqn. (12) using the Sedov solution for
the expansion history of the supernova remnant. This
means we assume in this discussion that the cosmic-ray
pressure is less than the ram pressure at the shock front,
so that the shock speed is not strongly modified by the
presence of the cosmic rays. If we normalize to
parameters typical of Type II galactic supernovae and of
a hot Phase III interstellar medium, then the upstream
velocity in the shock frame is

u1= (103.5 krn s-1) x (vej/103 "5km s"l) (t/11)'3/5 (14)

where ve. is the initial ejecta expansion velocity and t1 is
• J .

the t_me for the ejecta to sweep up their own mass from
the interstellar medium:

t1---(103 .5years)(EsN / 1051 ergs)l/3 (nism/10 "2cm-3)-1/3

x (Vej/103"5 km s-l) "5/3 . (15)

Substituting expression (14) for u1 into Eqn. (12), we can
integrate to find the time dependence of the cosmic-ray
momentum:

p(t) = p® [ 1- (0.91 t1 / t)V5 ] (16)

where

p,_= (7 x 1012 eV/c)x (B0/10-6 gauss) (llZ/AK1,2)

x (_ B/B0) a (EsN/1051 ergs)l/3 (nism/10-2 cm-3)-1/3

x (Vej/103'5 km s-1)1/3 (17)

According to Eqn. (16), a cosmic-ray reaches
momentum equal to 50% of p® at a time t = 29 t_ = 10"
yrs, for the nominal parameters used to normahze the
above expressions. However the asymptotic momentum
attainable, p**, will be considerably less than the
observed value of 1014 - 1015 eV/c unless 6B / B0> 1
and some of the physical parameters in Eqn. (17) differ
substantially from the nominal values to which they have
been normalized here.

The parameter s B/B 0 is of course a function of the
actual physical conditions near the supernova remnant
shock, and must be determined self-consistently as a
function of the externally given environment. We can
use our simulation results to relate 6BIB 0 to the up-
stream flux of cosmic-rays, Jcr, defined dimensionlessly
as

J.- (n,_v=) / (ni_ VA). (18)

Figure 8 shows the dependence of 6B/B^ on J in our
...... el"

slmulatmns. The result is a strikingly sunpYe power-law,
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Figure 8: Scaling relation hetwen root-mean-square am-
plitude of magnetic field perturbations 6B/B 0 , and
normalized cosmic-ray flux Jcr, from our simulations.

6B/B 0 = 0.57 Jcr°'7 . (19)

If we substitute this relation into Eqn. (8) for the cosmic-
ray diffusion coefficient, we find that

D = (rL v/3 ) (59 Jcr"2'1) (20)

for 1.3 > Jcr > 0.6. If one extrapolates this relation to
somewhat larger fluxes, we obtain the result that
D < rLv/3forJ > 7 Previous authors(eg Refs 2

CA" " • " " "

and 3 and references therein) have suggested that D =
r E v/3 is a minimum value for the cosmic-ray diffusion
coefficient. However the mean free path can be smaller
than the Larmor radius in the background field, rl,
because the fluctuating fields can be larger in magnitude

than the background field when Jcr > 3, and because
transitory_ strong trapping in the turbulent magnetic
fields can reduce the mean free path while still allowing
the particles to diffuse.

We can substitute Eqn. (19) into expression (17) for p®,
and derive the asymptotic maximum cosmic-ray energy
as a function of Jcr • For simplicity we take Z/A = 1,
since the mechanism must work for protons. Then in the

range 0.6-< Jcr-< 1.3, we have

p®= (1.4 x 1012 eV/c)x Jcr 2'1--0"4 (B0/10-6 gauss)

x (EsN/1051 ergs) 1/3 (nism/10 "2 cm-3) -1/3

x (%]/103.5km s'l)l/3 ; (21)

while for 0.04-< Jcr_< 0.6, we have

p®= (0.45 x 1012 eV/c) x Jcr 0.28 (Bo/10 -6 gauss)

x (EsN/1051 ergs) 1/3 (nism/10 "2 cm'3)'l/3

x (vej/103"5 km s'l)l/3. (22)

The numerical value of the asymptotic cosmic-ray
momentum p,, predicted by Eqns. (21) and (22) depends
on the cosmic-ray flux Jcr, and weakly on the physical

characteristics of the supernova remnant and its
surroundings. First consider the variation of p® with Jcr,
and assume that the other physical parameters take on
the normalization values indicated in Eqns. (21) and
(22). Then over the range we have simulated, 0.04 < J_
-< 1.3, the factors containing Jcr in Eqns. (21) and (2_}
lead to a relatively narrow variation of p** : 0.2 x 10_z_<
p®< 2.4 x 1012 eV/c. The observed maximum cosmic-
ray momentum is considerably larger than this range. In
order to produce realistically large cosmic-ray momenta
by varying Jcr alone, one would have to extrapolate our
results to the regime Jcr > > 1, where s B/B 0 > 1.

Because of the weak dependence of p® in (21) and (22)
on the parameters of the supernova explosion and the

interstellar medium, Jcr z 8 is the only way consistent
with the normal energetics and velocities of supernovae
to raise p® to its observed value _ 1015 eV. Under such
circumstances the cosmic-ray pressure can alter both the
shock structure and the value of u I used in Eqn. (14).
For the p-4 momentum spectrum expected in the
simplest form of shock acceleration, with the minimum

momentum P-in comparable to the thermal momentum
of the shocke_mterstellar medium, Pcr < pv2 implies

Jcr < 0.9 (100 keV/Emin) 1/2 (Vej/103"5 km s'l) 3

x (nism/10 -2 cm'3) 1/2 (B0/10-6 gauss) "1/2

x { 33/[ 1 + 21n(Pmax/mC ) ] } (tl/t) 6/5 (23)

Here, E_in = Pmin2/2m is the kinetic energy
corresponding to the lower cutoff of the momentum
distribution. The fact that x-ray emission from galactic
supernova remnants is in rough accord with the
predictions of supernova remnant models having Pc, <
pv2 upstream (Ref. 3) therefore suggests that J_ > > 1 is
unlikely in Type II supernovae. However, t_e higher

velocity Type I supernova remnants (Vei - 104 km S"l)
have a much larger kinetic energy flux'upstream from
the shock for the same age relative to tl, and thus may
be able to have high cosmic ray flux while still satisfying
Pcr < av2; Jet as large as 25 is allowed by Eqn. (23),
corresponding to s B/B, up to 5.5 in the cosmic ray
foreshock. From Eqn. (_1), we find p®= 1015 eV/c if Jer
= 19, corresponding to very strong turbulence 6B/B 0 = 5,
a value marginally within the dynamical constraints.
Thus, on dynamical grounds, Type I supernova remnants
may be the most favorable site for shock acceleration.
One should note that observations of the rate of
supernova occurence, lifetime of cosmic rays in the
galaxy inferred from the abundances of heavy nuclei in
the cosmic rays, and the number density of cosmic rays,
can be used to suggest that J__ < 1 even in Type I

.t;I

remnants during the acceleration phase (Zachary, Max
and Arons, in preparation). This conclusion militates
against the formation of large, B/B 0 even in Type I
supernova remnants. However, recent work (e.g., Ref.
9) has suggested that the protons may have undergone a
different history in the galaxy from that experienced by
the heavy nuclei. If the proton lifetime is a factor of ten
shorter than that of the heavy nuclei, our results suggest
that shock acceleration in Type I remnants remains a
viable candidate for the origin of cosmic rays.

In summary, extrapolation of our simulation results to
high-energy cosmic rays implies an upper limit of about
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1012 eV for the maximum energy attainable in shock-
acceleration at Type II supernova remnant shocks. This
is several orders of magnitude less than the observed
maximum energy of the power-law source distribution of
cosmic rays. On the other hand, the expansion of Type I
supernovae into the low density phase of the interstellar
medium may be able to accelerate cosmic rays to
energies comparable with the observed upper cutoff of
the smooth power-law distribution, if the very large field
amplitudes implied by our simulations are applicable to
the long wavelength magnetic fluctuations with which
the highest energy particles interact.
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